i " Department of Computer Science
mzurICh Programming, Education, and

Computer-Human Interaction

Coducate: A Code Editor

Extension to Streamline
Instructor-Led Live Coding

Lukas Mast
Bachelor’s Thesis

2024

Supervisors: Prof. Dr. April Yi Wang
PhD student Xiaotian Su

ABSTRACT

Live coding is a pedagogical technique used in programming education to demonstrate coding and problem-
solving in real-time. While it engages students and enhances learning outcomes, it imposes a significant cognitive
load on instructors who must simultaneously type, explain, debug, and manage classroom interactions. This thesis
proposes Coducate, a code editor extension designed to streamline instructor-led live coding by providing supportive
features for instructors. Coducate also improves the student experience by reducing the need for note-taking and
simplifying in-class collaboration. Key functionalities include notes written directly inside the code editor and the
use of Al code suggestions without participants noticing it. To evaluate the system’s usability, a small usability
study was conducted using the System Usability Scale (SUS) questionnaire and open-ended questions. The study
resulted in a SUS score of 86.5, which is considered “excellent” according to industry benchmarks, indicating high

user satisfaction.

ACKNOWLEDGMENT

This thesis is conducted under the guidance of the Programming, Education, and Computer-Human Interaction
(PEACH) Lab at ETH Ziirich. Special thanks to Prof. Dr. April Yi Wang and Xiaotian Su for their supervision. We

acknowledge the use of GPT-based models in revising sections of this document.

1 Introduction

Live coding is a widely used teaching technique in programming education, especially in introductory courses. It
involves instructors writing, debugging, and explaining code in real-time, providing students with a dynamic and
transparent view of the coding process. This approach makes abstract programming concepts more tangible and
helps students connect theory to practice.

However, live coding presents significant challenges. Instructors face a high cognitive load as they must simul-
taneously manage typing, explaining, debugging, and handling classroom interactions. Studies indicate that these
demands can lead to errors, slower pace, and reduced teaching effectiveness (see Appendix A.1). Additionally,
traditional live coding setups often lack effective collaboration mechanisms, leaving students as passive observers
rather than active participants in the learning process.

To address these challenges, this thesis introduces Coducate, a code editor extension designed to streamline
instructor-led live coding sessions. Coducate focuses on reducing instructors’ cognitive load by automating routine
tasks and providing tools that enable more effective collaboration. For example, instructors can grant students write
access to code during sessions, allowing them to actively participate by contributing directly. Moreover, features like
a diff editor for comparing code changes and the ability to integrate Al-powered code suggestions further enhance
the live coding experience.

The main contributions of this thesis are: (1) the development of Coducate, a code editor extension tailored
to address the unique challenges of live coding sessions by reducing cognitive load and enabling collaboration;
(2) an empirical evaluation of Coducate’s usability using the SUS and open-ended feedback, which demonstrated its
potential to improve teaching and student engagement; and (3) insights into future directions for live coding tools,
including strategies for enhancing collaboration.

By tackling the limitations of traditional live coding setups, Coducate aims to enhance the teaching experience

for instructors while fostering greater student engagement and collaboration.

2 Related Work

This section explores existing tools and platforms for collaborative live coding, focusing on their capabilities, limi-
tations, and how Coducate differentiates itself by addressing specific challenges faced in educational contexts. Prior
work can be grouped into three main themes: (1) real-time collaborative coding tools, (2) live coding solutions for

educational contexts, and (3) limitations and gaps in existing tools.

2.1 Real-Time Collaborative Coding Tools

A range of tools exists to support collaborative coding by enabling multiple users to work on the same codebase in
real-time. Visual Studio Code’s Live Share extension ! allows participants to edit and debug shared code collabo-
ratively. Similarly, JetBrains’ Code With Me plugin ? extends these capabilities to JetBrains integrated development
environments (IDEs), supporting pair programming, multi-user editing, and debugging.

Recent research has examined how developers engage in real-time collaborative programming and the challenges
associated with these tools. For instance, a study specifically focused on Live Share identified 18 usage scenarios, such
as pair programming and code review, alongside 17 critical requirements, including live editing, terminal sharing,

and mechanisms for focusing and following collaborators’ actions [6]. However, the study also revealed significant

Ihttps://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vsliveshare
2https://www. jetbrains.com/help/idea/code-with-me.html

https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vsliveshare
https://www.jetbrains.com/help/idea/code-with-me.html

challenges, such as lagging, permissions management, and conflict resolution, which hinder the effectiveness of

Live Share for seamless collaboration.

2.2 Live Coding Tools for Educational Contexts

In the context of education, tools like Improv have been designed specifically for live coding in instructional set-
tings [2]. Unlike general-purpose collaboration tools, Improv supports code-based presentations with features like
synchronized code blocks, output with slides, and preset waypoints, informed by Mayer’s principles of multimedia
learning [3]. These features aim to reduce cognitive load, enable dynamic presentations, and support audience inter-
action. The findings emphasize the importance of tools tailored to instructional needs, highlighting a gap in existing
general-purpose tools.

Browser-based platforms, such as Replit® and Google Colab*, also offer live coding capabilities by removing the
need for local installations. These platforms make coding activities more accessible and convenient by allowing stu-
dents to participate using only a browser. However, they often require instructors to shift away from their preferred
IDEs, such as Visual Studio Code, which, according to the 2024 Stack Overflow Developer Survey, is the most widely
used IDE in 2024 [5]. Moreover, these platforms lack advanced classroom-specific features, such as distraction-free

presentation modes and controlled mechanisms for managing student contributions during live coding.

2.3 Limitations and Gaps in Existing Tools

While tools like Live Share, Code With Me, and browser-based platforms address various aspects of collaboration and
education, they exhibit notable limitations in classroom settings. For example, Live Share lacks advanced mechanisms
for controlling or reviewing student contributions, making it less suitable for instructor-led sessions. Similarly,
Code With Me requires software installation, which can pose barriers in diverse technical environments, and has
restrictive licensing in its Community edition. Platforms like Replit and Google Colab, though accessible, require

instructors to move away from familiar IDEs and lack tailored tools for managing live coding workflows.

2.4 How Coducate Addresses These Challenges

Coducate is explicitly designed for instructor-led live coding sessions in classrooms, bridging the gap between
general-purpose tools and educational needs. It eliminates the need for software installation through browser-based
accessibility, allowing students to participate seamlessly. Moreover, Coducate provides several features tailored to ed-
ucational contexts. Instructors can review and manage student contributions effectively using a diff editor, ensuring
control over the collaborative process. Distraction-free interfaces are integrated to enhance focus during live cod-
ing sessions, aligning with the needs of classroom environments. Additionally, Coducate incorporates Al-powered
code suggestions, such as those provided by GitHub Copilot °, enabling instructors to enhance productivity without
students being aware of Al involvement.

By combining these features, Coducate enhances live coding workflows and addresses the unique challenges

faced in educational contexts, providing an improved experience for both instructors and students.

3https://replit.com/collaboration
4https://colab.google/
Shttps://github.com/features/copilot

https://replit.com/collaboration
https://colab.google/
https://github.com/features/copilot

3 Design

3.1 Goals

The design of Coducate focuses on reducing cognitive load for instructors while enhancing classroom collaboration.
It aims to address the time-intensive and error-prone aspects of live coding by providing features that streamline the

process and improve both teaching and learning experiences.

3.2 Structure

Coducate is designed to allow instructors to conduct live coding sessions entirely within Visual Studio Code without
needing to modify the editor’s interface for participant visibility. For example, instructors are not required to adjust
font size, theme, or the width of the file explorer inside Visual Studio Code to accommodate participants. Inspired
by the presentation view of PowerPoint, Coducate separates the instructor’s view, referred to as the editor view

(see Figure 1a), from the participants’ view, referred to as the web view (see Figure 1b). The web view can be

accessed on any device with a browser, offering flexibility for participants.

(a) Editor view (instructor). (b) Web view (participants).
Figure 1: Comparison between the editor view and the web view in Coducate.
This separation provides several advantages. Instructors can use coding aids, such as prewritten notes or Al code

suggestions, without participants being aware of their use. Such tools can improve the flow and quality of the live

coding session, ensuring a smoother experience for both instructors and participants (see Figure 2).

inchpad ®0 /A0 W0 & Java: Ready @ Ln3,Col5 Spaces:d UTF-8 LF (3 Java O Coducate & QPretiier (3

(a) Editor view with AI suggestions. (b) Web view without AI suggestions.

Figure 2: Al code suggestions are visible in the editor view but not in the web view.

4

Moreover, while it is technically feasible to sync back code written by participants in the web view to the instruc-
tor’s original Visual Studio Code file, this functionality has been intentionally excluded. Instead, Coducate includes
a diff editor that allows the instructor to review, accept, or reject participant contributions selectively (see Figure 3).
This design choice prevents potential disruptions, such as malicious edits or accidental deletions, while maintaining

control over the coding session.

VS Code © Client Diff: project/anyFile.html @

CODUCATE-1736023056139 (WORKSPACE)
html
lang=

xample HTHL Page:

Welcome to My Website
This is an example of a simple HTML file. 9 This is an example of a simple HTML file.

Hone:

ouTLINE
TIMELINE
JAVA PROJECTS

X 97 Launchpad ® 0 A0 WO & Java: Ready Ln9,Col1 Spaces:4 UTF-8 LF {) HTML O Coducate ShowDiff (1) & . Prettier (2

Figure 3: The diff editor in Coducate, allowing instructors to selectively accept or reject participant contributions.

Another benefit of the web view is its simplified and distraction-free interface. By hiding much of the code
editor’s user interface (Ul), Coducate creates a cleaner live coding experience for participants, making it easier for
them to focus on the content being taught. The web view is further divided into two types: the participant’s web view
(no room password required) and the instructor’s web view (room password required). This distinction allows certain
UI modifications to affect only the instructor’s web view, ensuring the participant’s view remains unaffected and

personalized, for example, with their preferred font size or theme (see Figure 4).

function helloWorld() { I
console. log ("Hello World");
}

(a) The instructor’s web view updated to the light theme. (b) The participant’s web view remains in the dark theme.

Figure 4: The Coducate: Change Theme command updates the theme exclusively for the instructor’s web view.

5

3.2.1 Workflow
Setup Phase

Instructor

« At the beginning of each live coding session (e.g., an exercise session or programming class), the instruc-
tor creates a room with a randomized room ID by using the Coducate: Start Session command in
Visual Studio Code’s Command Palette.

« The instructor then projects the web view for the participants to see. To join the newly created room, the
instructor enters the room ID and selects the I’'m the instructor option, which prompts them to enter the room

password.
Participants

« Participants can decide whether to join the session locally on their own devices by entering the provided
room ID or to simply observe the live coding on the instructor’s projection. Those joining on their own

devices will be assigned a unique client ID.

Live Coding Phase

Instructor
« After completing the setup, the instructor controls the live coding session directly within Visual Studio Code.

+ The instructor’s coding actions are displayed in real-time on all web views. If the instructor switches files
in the code editor, the change is reflected in all web views that are following the instructor. All workspace
operations, such as adding folders, creating, deleting, moving, or renaming files, are supported and will be

updated accordingly in the web view’s file explorer.

« The instructor can invite participants to collaborate by granting them write access. To do this, the instructor
can request the participant’s client ID and use the Coducate: Grant Write Access command. When a
participant makes changes, the instructor will see a status bar icon such as Show Diff (1) next to the Coducate
status bar icon, where the number in parentheses indicates the number of files with changes. By clicking on
Show Diff (1) and selecting a file, the instructor can open a diff editor. The left side of the diff editor displays
the original code from Visual Studio Code, while the right side shows the participant’s changes from the web
view. A Code Lens at the top of the diff editor provides options to either Accept Changes or Reject Changes.
Selecting Accept Changes applies the participant’s changes to the original file in Visual Studio Code, while

choosing Reject Changes resets the web view to match the original file of the instructor in Visual Studio Code.

« The instructor can revoke write access from participants by using the Coducate: Revoke Write Access

command.
Participants

« Participants accessing the session on their own devices can navigate through the files independently by se-
lecting a file in the file explorer. This action will automatically disengage them from following the instructor.
Consequently, any changes the instructor makes, such as switching files or scrolling within the same file, will
not be reflected in the participant’s web view. To resume following the instructor, participants can click the
Follow button.

« By default, participants only have read access. They can ask the instructor to grant them write access.
« Each participant can adapt it’s web view individually using the drop down menu.

Clean-up Phase
Instructor

« After completing the live coding session, the instructor can stop synchronization by using the Coducate: End

Session command.

« Session-specific data, such as notes, will remain stored locally in Visual Studio Code’s global store. To per-
manently delete a session, the instructor can use the Coducate: Manage Sessions command and select the

session to remove.
Participants

« After the live coding session ends, participants can continue exploring the files on their own devices, as
the code remains synced peer-to-peer. They can also download the workspace files as a ZIP by using the

Download Workspace button from the dropdown menu.

« To disconnect from the session, participants can use the Leave Room button from the dropdown menu.

3.2.2 Commands

All the features implemented by Coducate can be accessed through Visual Studio Code’s Command Palette. Each

command follows the format Coducate: <CommandName>. The commands provided by Coducate are as follows:

Coducate: Start Session Starts a live coding session. The instructor can choose between a New Session or an
Existing Session. If New Session is selected, the instructor is prompted to set an easy-to-remember room name and a

room password. Additionally, the instructor can optionally select a Task Description file and/or a Learning Goals file.
Coducate: End Session Ends a live coding session.

Coducate: Manage Sessions Displays all previously created sessions. Upon selecting a session, the instructor

can view the room password, rename the session, or delete the session.

Coducate: Grant Write Access Grants write access to participants. The instructor can either grant write access
to a specific participant by entering the client ID or to all participants. Participants with write access can edit the

code from their participant’s web view.

Coducate: Revoke Write Access Revokes write access from participants. The instructor can either revoke write
access for a specific client by selecting their client ID from a list of clients with write access, or revoke access for all

participants.

Coducate: Emulate Terminal Spawns a pseudo-terminal running bash for macOS and Linux, or WSL using
bash for Windows. Input and output inside the pseudo-terminal are displayed in real-time on all web views. The
emulated terminal in the web view is always read-only, allowing users to observe the terminal activity without
directly interacting with it. The terminal closes both in the web view and in Visual Studio Code when the exit

command is used.

Coducate: Create Note Requires some consecutive lines of code to be selected. Once a selection is made, the
instructor is prompted to provide a name for the note. The selected lines are removed from the codebase and replaced

with a Code Lens displaying the note name (see Figure 5). The note can be used in the following ways:
1. Word by word using Cmd + — on macOS or Ctrl + — on Windows and Linux.
2. Line by line using Cmd + Shift + — on macOS or Ctrl + Shift + — on Windows and Linux.
3. All at once using the Tab key.

By clicking on the Code Lens of a created note, its content can be inserted at the cursor’s position.

s
inchpad @0 /A0 W0 & Java: Ready Spaces: 4 UTF-8 () Python 3.13.164-bit O Coducate & Q Prettier) X & pad ®OAO WO JavaiReady Ln12,Cols Spacesi4 UTF-8 LF () Python 3.13.164-bit O Coducate & O Prettier O

(a) Creating a note using Coducate: Create Note. (b) Inline code suggestions based on the created notes.
Figure 5: Inline code suggestions derived from the created notes.

Coducate: Remove Notes Prompts the instructor to remove notes either from the currently open file or from the

entire workspace. Additionally, specific notes can be deleted by clicking on their corresponding Code Lens.

Coducate: Toggle Suggestions Enables or disables inline suggestions from notes. This feature is useful if the
instructor wants to use Al code suggestions (e.g., GitHub Copilot). When both are active, their inline suggestions

are merged. Inline suggestions can also be toggled on or off using Ctrl + Shift + U.

Affects Instructor and Participant Web Views:

Coducate: Open Terminal Opens the terminal in the web view.

Coducate: Close Terminal Closes the terminal in the web view.

Affects Only the Instructor’s Web View:

Coducate: Change Font Size Allows the instructor to increase or decrease the font size in the code editor and

the emulated terminal of the web view.

Coducate: Change Theme Enables the instructor to change the web view’s theme by selecting either Dark or
Light mode.

Coducate: Open Explorer Opens the file explorer in the web view.

Coducate: Close Explorer Closes the file explorer in the web view.
8

3.3 Implementation Details

The project comprises a frontend, a backend, and the Visual Studio Code extension, each managed in its own GitHub
repository. The frontend and the backend are both running in separate Docker containers. There is a third Docker
container providing a MySQL database to store the room data. The three parts of Coducate communicate using web

sockets (see Figure 6).

3.3.1 Frontend

The frontend is set up and written using Vite together with React and TypeScript (TSX components). It is a single-
page application with a combined total of 2765 lines of user-written code (excluding blank lines, comments, and

setup files).

3.3.2 Backend

The backend is written in TypeScript using Express as the backend web application framework. The total amount

of user-written lines of code is 739 (excluding blank lines, comments, and setup files).

3.3.3 Visual Studio Code extension

The Visual Studio Code extension is written in TypeScript using esbuild as a module bundler. This part of the project
was scaffolded using Yeoman ° together with the NPM package generator-code ’. Real-time synchronization of code
is achieved through event listeners provided by the Visual Studio Code API, which work in conjunction with Yjs 8,
a shared peer-to-peer editing framework. Yjs provides shared data structures that are automatically synchronized,
enabling seamless collaboration. All user-written extension files (excluding blank lines, comments, and setup files)

have a combined length of 3425 lines of code.

4 Methodology

The design and development process for Coducate followed an iterative approach, encompassing research, proto-

typing, development, and evaluation phases.

4.1 Development

The development of Coducate began with a thorough review of scientific literature on live coding as a pedagogical
method. This was followed by a need-finding and brainstorming phase to identify key pain points faced by instructors
during live coding sessions and to generate ideas for addressing these challenges. As part of the need-finding process,
lecture observations were conducted in sessions where live coding was practiced, allowing us to identify common
issues and better understand the challenges instructors face in real-time teaching environments.

Recognizing the importance of accessibility and extensibility, we chose to develop a code editor extension for
Visual Studio Code, as it is the most popular IDE according to the 2024 Stack Overflow Developer Survey. We then
explored the technical capabilities of Visual Studio Code extensions, including Ul modifications and potential limita-

tions, to ensure feasibility.

®https://yeoman.io/
"https://www.npmjs.com/package/generator-code
8https://yjs.dev/

https://yeoman.io/
https://www.npmjs.com/package/generator-code
https://yjs.dev/

Visual Studio Code ’(

Web View Editor View Extensions

& 8 < installed— Coducate @
)= §) 2§ \

A

PEACH Lab Server Infrastructure
Nginx Local Storage —
serves web socket
frontend connections database
data
4
t a2k,
network: default-isg moun @ docker:
Y
read
Frontend Backend « > MySQL database

Figure 6: Architecture of Coducate showing how the frontend, backend, and database work together. The diagram
illustrates the communication between the web view (frontend), editor view (Visual Studio Code extension), backend,
and MySQL database using web sockets.

To address identified pain points, we conceptualized a PowerPoint-inspired presentation mode using a web view,
designed to separate the instructor’s view from that of participants. This approach enabled us to implement features
that would not have been possible with a standard Visual Studio Code extension.

The next step involved creating initial paper prototypes, which quickly evolved into low-fidelity prototypes in
Figma °. Development proceeded iteratively, focusing on three core components: the frontend, backend, and the
Visual Studio Code extension. These components were developed in a round-robin fashion, with extensive testing
on localhost to ensure seamless integration.

In the final phase, the frontend and backend were containerized and deployed on the PEACH Lab web server at

ETH Ziirich. Coducate ' was published on Microsoft’s Extension Marketplace to make it accessible to all users.

“https://www.figma.com/
Whttps://marketplace.visualstudio.com/items?itemName=coducate.coducate

10

https://www.figma.com/
https://marketplace.visualstudio.com/items?itemName=coducate.coducate

4.2 Usability Study

To evaluate the usability and effectiveness of Coducate, a usability study was conducted involving five computer
science students. The study design and execution were approved by the ETH Ziirich Ethics Commission without

reservations.

4.2.1 Study Design and Objectives

The primary objective of the study was to assess whether Coducate effectively reduces the instructor’s mental load
and improves convenience during live coding sessions. The hypothesis was that Coducate significantly enhances
the usability and experience of live coding for instructors.

Study participants engaged in a controlled classroom environment where one participant acted as the instructor,
while others played the role of students. Each participant took turns being the instructor, with the researcher also
participating as a student. Observational notes were taken during the sessions, and post-session surveys, including
the sus (see Appendix B.1) and open-ended questions (see Appendix B.2), were administered to gather feedback.

No student learning data was collected.

4.2.2 Participant Recruitment and Inclusion Criteria

The study involved five participants, all computer science students with prior coding experience. Participants were
recruited through direct invitations. Exclusion criteria included individuals with no coding experience or those

unable to attend in person.

4.2.3 Data Collection Methods

Data collection methods included:
« Observational notes documenting participant interactions with Coducate.
+ A post-session usability survey using the SUS to evaluate the tool’s user experience.
« Open-ended questions to collect qualitative feedback, including suggestions for new features and recommen-
dations for improving existing functionalities.
4.2.4 Deployment and Procedure

The study was conducted in a controlled classroom setup. Participants alternated roles between instructor and
student, using Coducate for live coding sessions. At the end of the session, participants completed the usability

survey.

This methodology ensured a structured approach to designing, developing, and evaluating Coducate, with in-

sights gathered from both technical development and participant feedback.

11

5 Results

The usability study of Coducate involved five participants, all of whom tested the system in a controlled classroom

environment. Data was collected through observational notes, the SUS questionnaire, and open-ended qualitative
feedback.

5.1 Quantitative Results

The sUs questionnaire yielded an average score of 86.5, which is considered “excellent” according to industry bench-
marks (see Appendix B.3). This high score indicates strong user satisfaction and usability of the system (see
Figure 7). Observational data also revealed that Coducate effectively mitigated many common issues frequently

encountered during our observations of lectures where live coding was practiced.

System Usability Scale (n=5)

o o o
w N =3

le)
5

o o o o
© ~ [&2) (5]

o
©

Q10

o
-
N
w
IS
o

m Strongly Disagree m Disagree Neutral mAgree mStrongly Agree

Q1: Ithink that | would like to use Coducate frequently.
Q2: Ifound Coducate unnecessarily complex. (Reverse scored)
Q3: Ithought Coducate was easy to use.
Q4: Ithink that | would need the support of a technical person to be able to use Coducate. (Reverse scored)
Q5: | found the various functions in Coducate were well integrated.
Q6: | thought there was too much inconsistency in Coducate. (Reverse scored)
Q7: lwould imagine that most people would learn to use Coducate very quickly.
Q8: |found Coducate very cumbersome to use. (Reverse scored)
Q9: |felt very confident using Coducate.

Q10: Ineeded to learn a lot of things before | could get going with Coducate. (Reverse scored)

Figure 7: sUS evaluation results for Coducate with five study participants. The results demonstrate strong user
satisfaction, with an average score of 86.5 categorized as “excellent” according to industry benchmarks.

12

5.2 Qualitative Results

Open-ended questions provided valuable insights into user experience and potential improvements. Participants
highlighted the convenience of having notes integrated directly into the code editor and appreciated that Al code
suggestions, such as those provided by GitHub Copilot, could be utilized discreetly without students noticing their
use during live coding. Another feature that participants highly valued was the diff editor view, which provides a
clear side-by-side comparison of changes and allows instructors to easily accept or reject changes made by partici-

pants.

5.3 Emergent Themes

From the qualitative feedback, several themes emerged:

« Enhanced Productivity: The streamlined workflow helped reduce cognitive load, enabling instructors to

focus on teaching and problem-solving more effectively.

« Improved Collaboration: Study participants highlighted the ability for the instructor to grant write access
as a significant improvement for collaboration. This feature allowed participants to write code directly, saving
time and reducing confusion that often arose from verbal dictation. They noted that it addressed issues such
as unclear verbal instructions, difficulty hearing quieter participants, or confusion about which line of code

was being referenced, making the collaborative process much smoother.

« Suggestions for Future Enhancements: Proposed enhancements included differentiating code sugges-
tions by using distinct colors for those generated by Copilot versus those from Coducate’s notes, adding a
graphical user interface (GUI) for commands to reduce reliance on Visual Studio Code’s Command Palette, and

making smaller adjustments to the UI of the web view to improve usability.

These results collectively demonstrate the potential of Coducate to enhance instructor-led live coding sessions

by addressing common challenges and improving both the instructor and student experience.

13

6 Discussion

The findings of this study suggest that Coducate effectively addresses significant challenges faced by instructors
during live coding sessions. By streamlining routine tasks, such as managing files and organizing notes, Coducate
reduces cognitive load and allows instructors to focus on teaching and student interaction. This aligns with the
study’s hypothesis that Coducate would enhance the usability and experience of live coding for instructors.

One particularly noteworthy result was the positive reception of the feature that allows instructors to grant write
access to students. This capability eliminated the common issue of students verbally dictating code, which often led
to confusion or delays. Participants appreciated the smoother collaboration process, which saved time and minimized
misunderstandings, particularly in identifying the intended code lines or handling unclear verbal instructions. The
study participants also highlighted the utility of the diff editor view, which provided a clear, side-by-side comparison
of changes and enabled instructors to easily accept or reject contributions.

The usability study’s SUS score of 86.5 further underscores the tool’s effectiveness in improving the live coding
experience. This high score reflects strong user satisfaction and validates Coducate as a tool that meets the needs of
its intended users. Additionally, the ability to use Al code suggestions, such as those provided by GitHub Copilot,
without students noticing their use was seen as a significant advantage by instructors.

Despite these successes, the study revealed areas for improvement. Participants suggested enhancements, such
as differentiating colors for code suggestions from Copilot and Coducate’s notes, adding a GUI for commands to
reduce reliance on the Visual Studio Code Command Palette, and making minor adjustments to the web view’s UL

These proposed features indicate opportunities for future iterations to improve the user experience.

6.1 Limitations

While the study provides promising results, it has certain limitations. First, the dependency on Visual Studio Code
may restrict adoption among instructors who prefer other IDEs. Second, the study involved a small sample size of
five participants, which limits the generalizability of the findings. Moreover, none of the study participants were
actual instructors. They merely acted as instructors in this controlled classroom environment, which may not fully
capture the complexities of real-world teaching scenarios. Future studies should include a larger and more diverse
group of participants to validate the results further. Lastly, while the study demonstrated the tool’s effectiveness in
a controlled classroom environment, real-world variability in teaching contexts could reveal additional challenges

or limitations.

6.2 Future Directions

The study highlighted several areas where Coducate could be further improved. Enhancing its UL, adding features
like differentiated colors for code suggestions from GitHub Copilot and Coducate’s notes, and introducing a GUI for
commands were among the suggestions from participants. These changes could enhance the usability and accessi-
bility of the tool. Additionally, expanding the user base with a larger-scale usability study would help validate the
findings and ensure the tool’s adaptability across diverse teaching contexts.

In conclusion, Coducate demonstrates potential to transform instructor-led live coding by addressing key pain

points and fostering a more efficient and collaborative environment.

14

7 Future Work

A key direction for future work is to expand Coducate’s compatibility to include a wider range of code editors
and development environments. This enhancement would make the tool more accessible to instructors who prefer
platforms other than Visual Studio Code.

Another promising avenue for future work is enhancing collaboration features for participants. One idea is to in-
troduce a new mode distinct from live coding, where participants can write code locally without it being synced with
others. This would allow the instructor to let participants work independently on coding tasks and later “publish”
a solution. The published solution would include a diff view in the participants’ web view, showing the instructor’s
code alongside their own, helping them understand differences and learn from the process.

Additional collaboration-focused features could include interactive exercises, such as showing participants a set
of code snippets (one correct and others incorrect) and asking them to select the correct snippet. This would foster
engagement and active learning during live coding sessions.

Finally, incorporating more features powered by large language models (LLMs) offers exciting possibilities. For
example, when participants are new to coding, best practices could be identified during live coding with the help of
an LLM. These best practices could then be displayed in an info box on the participants’ web view, enhancing their
learning experience.

Long-term studies could help us understand how Coducate impacts teaching and learning over time. These
studies could explore whether it consistently improves student engagement, instructor efficiency, and classroom

dynamics in different settings.

8 Conclusion

This thesis introduced Coducate, a code editor extension designed to streamline and enhance the experience of
instructor-led live coding sessions in programming education. By addressing key challenges such as the cognitive
load on instructors and the barriers to effective collaboration, Coducate enhances the teaching experience and student
engagement, ultimately contributing to the field of educational technology.

This work also provides an empirical foundation for the usability and effectiveness of Coducate. With a SUS score
of 86.5, the tool demonstrates strong user satisfaction and practical value. However, the results of this study should be
interpreted with caution, as the number of participants was limited to five, and none of them were actual instructors;
they merely acted as instructors in a controlled classroom environment. The feedback gathered during the study
highlights opportunities for further refinement and underscores the potential of such tools to improve programming
education.

Ultimately, this work aims to inspire further research and innovation, contributing to the development of tech-

nologies that meaningfully support both educators and learners.

15

A Literature Review

A.1 Benefits and Drawbacks of Live Coding

Perceived benefits of live cod- | # of | Studies which
ing stud- | perceived these
ies benefits

Improves debugging skills 9 [3, 4, 15, 31, 35, 36,
39, 41, 44]

Exposes programming as a pro- | 8 [3, 17, 22, 35, 36, 41,

cess 44, 45]

Increases student engagement 7 [6, 17, 31, 35, 36, 39,
42]

Teaches how to apply program- | 5 [16, 21, 31, 36, 47]

ming concepts

Improves testing skills 5 [1, 3, 22, 36, 39]

Teaches incremental Coding 5 [3, 22, 35, 39, 44]

Table 1: The six most frequently perceived benefits of live coding across all reviewed studies. Source: [4]

Perceived drawbacks of live | # of stud- | Studies which

coding ies perceived
these draw-
backs

Relatively time-consuming [6, 17, 36, 39]

Hard for students to take notes [45]

Hard for students to keep up with [17]

the pace of programming

Table 2: The perceived drawbacks of live coding across all reviewed studies. Source: [4]

16

B Study

B.1 System Usability Scale questionnaire

The following survey was used to evaluate the usability of Coducate using the SUS. Participants were asked to rate the

following statements by selecting one of the options: Strongly Disagree, Disagree, Neutral, Agree, Strongly Agree.

1. I think that I would like to use Coducate frequently.

0 Strongly Disagree U Disagree U Neutral O Agree O Strongly Agree
2. Ifound Coducate unnecessarily complex. (Reverse scored)

U Strongly Disagree U Disagree U Neutral O Agree O Strongly Agree
3. Ithought Coducate was easy to use.

0 Strongly Disagree U Disagree 0 Neutral 0 Agree 0J Strongly Agree
4. 1think that I would need the support of a technical person to be able to use Coducate. (Reverse scored)

0 Strongly Disagree U Disagree 0 Neutral 0 Agree UJ Strongly Agree
5. Ifound the various functions in Coducate were well integrated.

U Strongly Disagree U Disagree U] Neutral O Agree O Strongly Agree
6. Ithought there was too much inconsistency in Coducate. (Reverse scored)

U Strongly Disagree U] Disagree L] Neutral U Agree U Strongly Agree
7. I would imagine that most people would learn to use Coducate very quickly.

U Strongly Disagree [Disagree U] Neutral U Agree U Strongly Agree
8. Ifound Coducate very cumbersome to use. (Reverse scored)

U] Strongly Disagree U] Disagree U] Neutral 0 Agree U Strongly Agree
9. Ifelt very confident using Coducate.

U Strongly Disagree U Disagree O Neutral U Agree O Strongly Agree

10. Ineeded to learn a lot of things before I could get going with Coducate. (Reverse scored)

O Strongly Disagree U Disagree O Neutral U Agree O Strongly Agree

17

B.2 Open-ended questions

In addition to the SUS questionnaire, study participants were asked the following open-ended questions:

e How did Coducate impact your mental workload during live coding?

What specific features of Coducate did you find most useful?

Were there any features you found confusing or difficult to use? Please elaborate.

How did Coducate compare to other tools or methods you have used for live coding?

Would you recommend Coducate to other instructors? Why or why not?

Do you think Coducate improved the overall experience of live coding for students?

What improvements or additional features would you suggest for Coducate?

B.3 System Usability Scale: Adjective Ratings and Scoring Scales

E

ACCEPTABILITY NOT ACCEPTABLE __ MARGINAL _ ACCEPTABLE

GRADE
SCALE | E | D [€ [B [A |
ADJECTIVE WORST BEST

|||||§||§|||§|I|I§|IEI|E
0 10 20 30 40 50 60 70 80 90 100

SUS Score

Figure 8: A comparison of the adjective ratings, acceptability scores, and school grading scales, in relation to the
average SUS score. Source: [1]

18

References

(1]

Aaron Bangor, Philip Kortum, and James Miller. 2009. Determining what individual SUS scores mean: adding an
adjective rating scale. J. Usability Studies 4, 3 (May 2009), 114-123. https://dl.acm.org/doi/pdf/1@.5555/
2835587.2835589

Charles H. Chen and Philip J. Guo. 2019. Improv: Teaching Programming at Scale via Live Coding. In Proceedings
of the Sixth (2019) ACM Conference on Learning @ Scale (Chicago, IL, USA) (L@S ’19). Association for Computing
Machinery, New York, NY, USA, Article 9, 10 pages. https://doi.org/10.1145/3330430.3333627

Richard E. Mayer. 2001. Multimedia Learning. Cambridge University Press, Cambridge.

Ana Selvaraj, Eda Zhang, Leo Porter, and Adalbert Gerald Soosai Raj. 2021. Live Coding: A Review of the
Literature. In Proceedings of the 26th ACM Conference on Innovation and Technology in Computer Science Education
V. 1 (ITiCSE °21). Association for Computing Machinery, New York, NY, USA, 164-170. https://doi.org/10.
1145/3430665.3456382

Stack Overflow. 2024. Technology | 2024 Stack Overflow Developer Survey. https://survey.stackoverflow.
co/2024/technology#most-popular-technologies-new-collab-tools Accessed: 2024-12-31.

Xin Tan, Xinyue Lv, Jing Jiang, and Li Zhang. 2024. Understanding Real-Time Collaborative Programming: A
Study of Visual Studio Live Share. ACM Trans. Softw. Eng. Methodol. 33, 4, Article 110 (April 2024), 28 pages.
https://doi.org/10.1145/3643672

19

https://dl.acm.org/doi/pdf/10.5555/2835587.2835589
https://dl.acm.org/doi/pdf/10.5555/2835587.2835589
https://doi.org/10.1145/3330430.3333627
https://doi.org/10.1145/3430665.3456382
https://doi.org/10.1145/3430665.3456382
https://survey.stackoverflow.co/2024/technology#most-popular-technologies-new-collab-tools
https://survey.stackoverflow.co/2024/technology#most-popular-technologies-new-collab-tools
https://doi.org/10.1145/3643672

	Introduction
	Related Work
	Real-Time Collaborative Coding Tools
	Live Coding Tools for Educational Contexts
	Limitations and Gaps in Existing Tools
	How Coducate Addresses These Challenges

	Design
	Goals
	Structure
	Workflow
	Commands

	Implementation Details
	Frontend
	Backend
	Visual Studio Code extension

	Methodology
	Development
	Usability Study
	Study Design and Objectives
	Participant Recruitment and Inclusion Criteria
	Data Collection Methods
	Deployment and Procedure

	Results
	Quantitative Results
	Qualitative Results
	Emergent Themes

	Discussion
	Limitations
	Future Directions

	Future Work
	Conclusion
	Literature Review
	Benefits and Drawbacks of Live Coding

	Study
	System Usability Scale questionnaire
	Open-ended questions
	System Usability Scale: Adjective Ratings and Scoring Scales

